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Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were
applied using a training set of 72 inhibitors of the benzamidine type with respect to their binding
affinities (Ki values) toward thrombin, trypsin, and factor Xa to yield statistically reliable models
of good predictive power. Two methods were compared: the widely used comparative molecular
field analysis (CoMFA) and the recently reported CoMSIA approach (comparative molecular
similarity indices analysis). CoMSIA produced significantly better results for all correlations.
Furthermore, in contrast to CoMFA, CoMSIA is not sensitive to changes in orientation of the
superimposed molecules in the lattice. The correlation results obtained by CoMSIA were
graphically interpreted in terms of field contribution maps allowing physicochemical properties
relevant for binding to be easily mapped back onto molecular structures. The advantage of
this feature is demonstrated using the maps to design new molecules. Finally, the CoMSIA
method was applied to elucidate structural features among ligands which are responsible for
affinity differences toward thrombin and trypsin. These selectivity-determining features were
interpreted graphically in terms of spatial regions responsible for affinity discrimination. Such
indicators are highly informative for the lead optimization process with respect to selectivity
enhancement.

Introduction

The blood clotting cascade is a complex and highly
controlled system of several sequential and feedback-
regulated processes.1 A blood clot is formed through the
action of a bifurcated cascade of proteolytic reactions
involving nearly 20 different glycoproteins or factors.
Some of these clotting factors are inactive serine pro-
teinase zymogens that are proteolytically activated by
serine proteinases further up in the cascade. The
different serine proteinases involved are structurally
related,2 and several of them have been selected as
potential targets for drug development, e.g., toward
thrombosis. Inhibition at different levels of the cascade,
e.g., at thrombin, factor Xa, factor VIIa, factor IXa, or
factor XIa, will have a distinct impact on the cascade,
resulting in varying therapeutic profiles for specific
inhibitors. The structural relationship among these
proteinases is also reflected in the shape and properties
of inhibitors acting upon them. Accordingly, since high
selectivity of these inhibitors is desired, powerful tools
to elucidate the features that control selectivity are of
utmost importance. Three-dimensional quantitative
structure-activity relationship (3D QSAR) methods can
be used to extract such criteria from a set of structurally
related inhibitors.

In principle, a 3D QSAR study should have two
functions: the derivation of a statistically significant

and highly predictive QSAR model that allows to
estimate and rank new compounds to be synthesized
and, for the design process even more important, the
provision of an easily interpretable graphical tool that
denotes those areas of known inhibitors that require a
particular physicochemical property to increase affinity
and selectivity.3 These properties might be steric bulk,
partial charge, local hydrophobicity, or hydrogen-bond
donor or acceptor facilities.

In this paper, two 3D QSAR methods were applied:
in both approaches, molecular property fields are evalu-
ated between a probe atom and each molecule of a data
set at the intersections of a regularly spaced grid. The
widely used CoMFA (comparative molecular field analy-
sis) method4 calculates steric and electrostatic proper-
ties according to Lennard-Jones and Coulomb poten-
tials. CoMSIA (comparative molecular similarity indices
analysis)5 is an alternative approach to perform 3D
QSAR by comparative molecular field analysis. Molec-
ular similarity is compared in terms of similarity
indices. This method allows the consideration of various
physicochemical properties, and the resulting contribu-
tion maps can be intuitively interpreted. They can also
be used to map and pin down those features responsible
for selectivity differences among ligands.

A data set of 72 inhibitors derived from 3-amidi-
nophenylalanine is selected for which detailed Ki values
for their inhibition of trypsin, thrombin, and factor Xa
have been reported.6-9 In all cases we develop statisti-
cally significant CoMFA and CoMSIA models. The
higher statistical significance and greater robustness of
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Table 1. Substituents at Positions R1 and R2 and Formal Charges of the 72 Inhibitors Included in the Training Seta
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the CoMSIA method is demonstrated. The CoMSIA
method has been applied by considering five different
similarity fields: steric, electrostatic, hydrophobic, hy-
drogen-bond donor, and hydrogen-bond acceptor proper-
ties. The correlation models obtained can be related to
the contribution maps, and consequences for a possible
design of novel inhibitors are shown. Finally, we used
the affinity differences of the ligands in order to derive
models to elucidate their selectivity-determining fea-
tures. Despite the higher relative errors associated with
the difference in Ki values, reliable models are obtained
that provide interesting information in the various
property maps with respect to selectivity discrimination.

The CoMSIA Method

Recently, we reported an alternative comparative
molecular field analysis, CoMSIA, based on molecular
similarity indices.3,5,10 This method avoids some of the
inherent deficiencies arising from the functional form
of the Lennard-Jones and Coulomb potentials used in
the original version of CoMFA.4 Both potentials are very
steep close to the van der Waals surface and produce
singularities at the atomic positions. As a consequence,
the potential energy expressed at grid points in the
proximity of the surface changes dramatically. However,
it is precisely this region that contains the important
descriptors for a QSAR analysis.11 To avoid unaccept-
ably large energy values, the potential evaluations are
normally restricted to regions outside the molecules and
require the definition of some arbitrarily determined
cutoff values. Due to differences in the slope of the
Lennard-Jones and Coulomb potentials, these cutoff
values are exceeded at different distances from the
molecules,11 requiring further arbitrary scaling of the
two fields in a simultaneous evaluation which can
involve the loss of information about one of the fields.

To overcome such problems, CoMSIA evaluates mo-
lecular similarity in space. Similarity is expressed in
terms of different physicochemical properties: steric
occupancy, partial atomic charges, local hydrophobicity,
and hydrogen-bond donor and acceptor properties.3
Using a common probe atom, similarity indices are
calculated for a data set of prealigned molecules at
regularly spaced grid points. In determining such
similarities, the mutual distances between the probe
and the atoms of the molecules of the data set are
considered. For this distance dependence, a Gaussian-

type functional form is selected that avoids singularities
at the atomic positions and requires no arbitrary defini-
tion of cutoff limits. The similarity indices can be
calculated at all grid points inside as well as outside
the molecules and are subsequently evaluated in a PLS
analysis12,13 following the usual CoMFA protocol.

The CoMSIA approach presently considers five dif-
ferent property fields. The purpose of using five (or
more) different fields is not to increase the significance
and predictive power of the 3D QSAR models. Primarily,
the intention is to partition the various properties into
spatial locations where they play a decisive role in
determining biological activity. This aspect is of utmost
importance if a targeted optimization of molecules in a
design program is anticipated.

At this point, the major advantage of CoMSIA com-
pared to usual CoMFA becomes apparent: the better
ability to visualize and interpret the obtained correla-
tions in terms of field contributions. Contour maps of
the relative spatial contributions (isocontours of the
coefficients obtained from PLS analysis) of the different
fields are commonly used.4 They indicate those lattice
points where a particular property is weighted highest
in order to explain trends in affinity data. However, in
CoMFA these maps are often neither contiguous nor
smoothly connected. Accordingly, they are difficult to
interpret, due mainly to the steepness of the potentials
close to the molecular surfaces and the previously
described cutoff settings. Using molecular similarity
indices, substantially improved contour maps are ob-
tained that are easy to interpret in terms of separate
property fields and consequently are intuitive as a
visualization tool in designing novel compounds. The
level-dependent contouring of CoMFA field contribu-
tions highlights those regions in space where the aligned
molecules would favorably or unfavorably interact with
a possible environment. In contrast, the CoMSIA field
contributions denote those areas within the region
occupied by the ligands that “favor” or “dislike” the
presence of a group with a particular physicochemical
property. This association of such required properties
with a possible ligand shape is a more direct guide to
check whether all features important for activity are
present in the structures under consideration.

Table 1 (Continued)

a The experimental binding affinities toward thrombin, trypsin, and factor Xa are expressed as pKi (-log Ki) values; Ki in mol/L.
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Methods
All molecular modeling and comparative molecular field

evaluations were performed using SYBYL14 versions 6.3 and
6.4 running on a Silicon Graphics O2 (R5000) workstation.

Data Set and Alignment. A training set of 72 inhibitors
derived from 3-amidinophenylalanine was used for all CoMFA
and CoMSIA analyses. Structural variations of the parent
structure, present in all molecules, were allowed at the
positions R1 and R2.

The considered substituents of the inhibitors are summarized

in Table 1. The protonation state of acidic and basic groups
was assumed to be as follows: the benzamidine moiety and
basic amino functional groups were protonated, and amides
and amino groups adjacent to aromatic portions were treated
as uncharged. All carboxylate groups were considered to be
deprotonated. To obtain a consistent alignment, the crystal
structures of thrombin, trypsin, and factor Xa from the
Brookhaven Protein Data Bank (PDB)15 were used as refer-
ences (1ETS,16 1PPH,17 and 1HCG18). Using the binding
geometry of 3-TAPAP (45) bound to trypsin (1PPH), the
ligands were first placed into the binding site of the latter
protein according to the following procedure: the unmodified
TAPAP-type parent structure was used as a template for
superposition. The R1 and R2 substituents were constructed
from the SYBYL fragment database and minimized using the
TRIPOS force field.19,20 Conformational flexibility of the sub-
stituents was taken into account by a systematic conforma-
tional search.21 By displaying solvent-accessible Connolly
surfaces around the binding sites of the three related proteins,
sterically unfavored conformations initially fitted to trypsin
were detected and subsequently altered to achieve a satisfac-

Figure 1. Alignment of the 72 inhibitors together with the binding site of trypsin. The solvent-accessible surface is indicated as
a solid surface. The three sketches below highlight the relevant amino acids surrounding the binding sites of the related proteins.
The catalytic triad is formed by Asp102, His57, Ser195.
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tory alignment. At last, the complete molecules were mini-
mized again using the TRIPOS force field. The structural
diversity of the aligned ligands obtained is shown in Figure
1. The finally accepted superposition showed reasonable fit to
all three binding pockets. In the following analyses this
common alignment has been evaluated. It is likely that the
actual binding mode of a particular ligand will deviate slightly
among the three related proteins. However, these possible
deviations are not considered in our model due to the lack of
conclusive information about detailed binding modes. More
important and with respect to real-life CoMFA studies where
no reference protein structures are available to rationalize
such minor alignment differences, we expect our models to be
robust and still conclusive enough to cope with these devia-
tions. (The atomic coordinates of all molecules of the data set
are available from the authors upon request.)

The knowledge of the protein structure as a reference is not
a prerequisite to perform 3D QSAR analyses. However, if a
crystal structure of the protein is available, a relevant
structural alignment of the molecules can be defined with

much higher reliability. Furthermore, it provides the op-
portunity to interpret features indicated by the contour maps
with respect to the protein environment.3

The experimentally determined biological activities of the
different inhibitors toward thrombin, trypsin, and factor Xa
are given as pKi values (Table 1). The affinities toward
thrombin and trypsin spread over a satisfactorily large range
covering 4.0 and 4.7 logarithmic units, respectively, whereas
in the case of factor Xa a variation over 3.0 logarithmic units
falls close to the lower limit where the derivation of a
statistically significant 3D QSAR model can still be expected.
To obtain a better insight into the biological data, we first
checked the mutual intercorrelations among the three different
data sets. The correlation coefficients of the three combinations
are 0.72, 0.28, and 0.46, respectively. The pronounced inter-
correlation among the thrombin and trypsin data indicates the
closer relationship of the inhibition toward these two serine
proteinases.

CoMFA and CoMSIA Analysis. Steric and electrostatic
CoMFA fields were calculated as implemented in SYBYL14

Table 2. Parameters of the Grid Boxes Used for CoMFA and CoMSIA Analyses

2.0 Å grid 1.5 Å grid 1.0 Å grid

x y z x y z x y z

lower corner -6.5 -18.0 -1.0 -6.5 -18.0 -1.0 -6.5 -18.0 -1.0
high corner 19.5 4.0 23.0 19.5 4.0 23.0 19.5 4.0 23.0
step size 2.0 2.0 2.0 1.5 1.5 1.5 1.0 1.0 1.0
number of

steps
14 12 13 18 15 17 27 23 25

points 2184 4590 15525

Table 3. Summary of Results from the CoMFA and CoMSIA Analyses

thrombin trypsin factor Xa

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

q2 0.687 0.757 0.629 0.752 0.374 0.594
spress 0.594 0.531 0.556 0.469 0.515 0.424
r2 0.881 0.950 0.916 0.972 0.680 0.915
S 0.366 0.241 0.264 0.157 0.368 0.194
F 124.4 206.6 144.4 240.1 48.2 117.1
components 4 6 5 9 3 6
fraction

steric 0.624 0.214 0.658 0.167 0.701 0.175
electrostatic 0.376 0.147 0.342 0.158 0.299 0.160
hydrophobic 0.298 0.295 0.345
donor 0.087 0.104 0.090
acceptor 0.253 0.276 0.230

box: stepsize 2 Å

q2 0.697 0.757 0.609 0.756 0.415 0.589
spress 0.584 0.532 0.580 0.467 0.501 0.427
r2 0.873 0.949 0.959 0.972 0.784 0.915
S 0.378 0.244 0.189 0.159 0.305 0.194
F 115.5 199.6 211.6 235.9 60.6 116.3
components 4 6 7 9 4 6
fraction

steric 0.608 0.218 0.649 0.172 0.709 0.177
electrostatic 0.392 0.171 0.351 0.176 0.291 0.170
hydrophobic 0.278 0.286 0.334
donor 0.087 0.102 0.090
acceptor 0.246 0.265 0.229

box: stepsize 1.5 Å

q2 0.691 0.756 0.635 0.754 0.429 0.590
spress 0.590 0.532 0.561 0.467 0.495 0.426
r2 0.879 0.949 0.952 0.971 0.798 0.915
S 0.370 0.244 0.204 0.159 0.294 0.194
F 121.1 200.0 180.2 234.3 66.2 116.5
components 4 6 7 9 4 6
fraction

steric 0.613 0.217 0.636 0.171 0.701 0.176
electrostatic 0.387 0.172 0.364 0.180 0.299 0.170
hydrophobic 0.279 0.284 0.336
donor 0.088 0.103 0.091
acceptor 0.244 0.262 0.228

box: stepsize 1 Å
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using Lennard-Jones and Coulomb potentials, respectively.4
Partial atomic charges were determined using the AM1
Hamiltonian22 within the semiempirical package MOPAC
6.023,24 taking into account the formal charges as listed in Table
1. All CoMFA calculations were performed with SYBYL
standard parameters (TRIPOS standard field, dielectric con-

stant 1/r, cutoff 30 kcal/mol) using an sp3 carbon probe atom
with a charge of +1.0. Details about the evaluation in CoMSIA
are given in our previous papers.5,10 To shortly summarize,
CoMSIA calculates similarity indices at the intersections of a
surrounding lattice. The similarity index AF

25 for a molecule j
with i atoms at the grid point q is determined as follows:

Figure 2. Fitted predictions versus actual binding affinities for the 72 inhibitors of the training set. The predicted values were
obtained by PLS analyses using the CoMFA and CoMSIA method with 2 Å grid spacing.

Figure 3. Dependence of q2 for CoMFA and CoMSIA on translations and rotations of the entire data set with respect to the
surrounding lattice. Translations are in steps of 0.25 Å along the xyz diagonal; rotations are in steps of 20° around the x-axis.
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Five physicochemical properties k (steric, electrostatic, hydro-
phobic, and hydrogen-bond donor and acceptor) were evalu-
ated, using a common probe atom with 1 Å radius and charge,
hydrophobicity, and hydrogen-bond property of +1. A Gauss-
ian-type distance dependence was considered between the grid
point q and each atom i of the molecule. The value of the so-
called attenuation factor R was initially set to 0.3.

The different CoMSIA fields were calculated with a separate
Fortran program.5,26 Steric property fields were expressed by
the third power of the atomic radii. Partial atomic charges
attributed to the various atoms in the different molecules were
calculated using the AM1 method. Local hydrophobicities were
associated using atom-based parameters developed by Viswa-

nadhan et al.27 Putative positions of possible hydrogen-bond
donor and acceptor atoms were assigned by a set of rules
derived from experimental values.28,29 The output from the
Fortran program was subsequently transferred to a SYBYL
molecular spreadsheet using an SPL macro.

At first, a lattice of 2 Å grid spacing was generated
automatically. To allow a comparison of CoMFA and CoMSIA
results, the grid box coordinates were changed manually to
reveal consistent values. Additional lattices with 1.5 and 1 Å
grid spacing with the same orientation were generated (Table
2). CoMFA and CoMSIA fields were subsequently calculated
as described above. PLS analyses were performed following
the CoMFA standard implementation in SYBYL. The five
different descriptor blocks have been scaled to each other using
the CoMFA standard scaling option. To check statistical
significance of the models, cross-validations were done by
means of the “leave-one-out” (LOO) procedure using the
enhanced version of PLS, the SAMPLS method.30 The optimal
number of components was determined by selecting the
smallest sPRESS value. Usually this value corresponds to the
highest q2 value. The same number of components was
subsequently used to derive the final QSAR models. For all
conventional analyses (no cross-validation) the “minimum-
sigma” standard deviation threshold was set to 1.0 kcal/mol.
The statistical results are summarized in Table 3. The q2,
sPRESS, r2, and S values were computed as defined in SYBYL.
The plots of predicted versus actual binding affinities for the
fitted PLS analyses are shown in Figure 2.

Additionally, to perform an even more rigorous statistical
test, several runs of a “leave-five-out” procedure were done
using the 2 Å lattice spacing (Table 4). In this case, five
arbitrarily selected compounds were dropped from the training
set and used for prediction. The procedure leaving five
molecules out at a time revealed similar q2 values to the
corresponding LOO results. However, q2 values obtained from
the CoMFA method spread over a larger range than those from
CoMSIA. In general, the optimal numbers of components for

Table 4. Five Runs of Cross-Validations Using the
“Leave-Five-Out” Procedurea

thrombin trypsin factor Xa

q2 spress comp q2 spress comp q2 spress comp

CoMFA
run 1 0.666 0.613 4 0.605 0.566 3 0.333 0.535 4
run 2 0.685 0.596 4 0.595 0.573 3 0.381 0.512 3
run 3 0.597 0.679 5 0.648 0.542 5 0.404 0.498 2
run 4 0.680 0.600 4 0.604 0.566 3 0.352 0.524 3
run 5 0.617 0.656 4 0.638 0.549 5 0.360 0.517 2
LOO 0.687 0.594 4 0.629 0.556 5 0.374 0.515 3

CoMSIA
run 1 0.761 0.530 5 0.760 0.458 8 0.612 0.411 5
run 2 0.772 0.518 5 0.760 0.462 9 0.532 0.452 5
run 3 0.765 0.526 5 0.740 0.481 9 0.594 0.424 6
run 4 0.778 0.507 4 0.757 0.464 9 0.588 0.427 6
run 5 0.785 0.503 5 0.758 0.464 9 0.567 0.438 6
LOO 0.757 0.531 6 0.752 0.469 9 0.594 0.424 6

a The “Leave-One-Out” (LOO) results are shown for comparison.

AF,k
q(j) ) -∑

i

wprobe,kwike
-Rriq

2

Figure 4. Predicted versus actual binding affinities for the 16 inhibitors not included in the training set. The predicted values
were obtained by PLS analyses using the CoMFA and CoMSIA method with 2 Å grid spacing. The dashed lines mark deviations
of 1 (factor Xa: 0.5) logarithmic unit from the ideal prediction.
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the final analyses were identical for both the “leave-one-out”
and “leave-five-out” procedures.

A common test to check the consistency of the models is to
scramble the biological data and repeat the model derivation

process, allowing detection of possible chance correlations.
After randomizing our data sets in several distinct ways, in
all cases we only observed negative q2 values in the PLS
analyses.

Table 5. Substituents at Positions R1 and R2 and Formal Charges of the 16 Inhibitors Included in the Test Seta

a The experimental binding affinities toward thrombin, trypsin, and factor Xa are expressed as pKi values.
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A well-known problem in CoMFA is that statistical results
are dependent on the relative orientation of the molecules of
a data set with respect to the lattice.31,32 To check these
inconsistencies and to estimate the robustness of the QSAR
models obtained, we translated and rotated the entire data
set within the lattice. The translation procedure was performed
using the STATIC TRANSLATE command in SYBYL. The
original grid box with 2 Å lattice spacing was extended by 2 Å
in x, y, and z directions to guarantee an adequate margin of
the lattice surrounding all molecules during the translation.
The data set was translated along the xyz diagonal from 0 to
2 Å in steps of 0.25 Å. Subsequently, the data set was rotated
within the lattice using the STATIC ROTATE command. To
do so, the data set and the grid box, already used for
translation, were moved into the origin of the coordinate
system. The molecules were then rotated in steps of 20° around
the x-axis of the grid box. As the grid is orthogonal, a rotation
from 0° to 180° was sufficient. CoMFA and CoMSIA fields were
calculated, and PLS analyses were subsequently performed
after each translation or rotation step. Cross-validated q2

values were determined for the binding affinities of trypsin,
thrombin, and factor Xa (Figure 3).

To check the predictive power of the obtained CoMFA and
CoMSIA models, 16 additional inhibitors were selected as a
test set (Table 5). The molecules were built and aligned by
the same protocol as already described for the inhibitors of
the training set. Predictions were performed using the three
QSAR models based on the 2 Å lattice spacing. Table 6
summarizes the results obtained from the CoMFA and CoM-
SIA analyses. The predictive r2 was calculated according to
the definition of Cramer et al.4 The plots of predicted versus
actual binding affinity for the test set molecules are shown in
Figure 4.

As mentioned above, similarity indices in CoMSIA are
calculated using a Gaussian-type distance dependence. The
attenuation factor R was initially set to 0.3. To decide whether
this is an appropriate value, R was varied in a parameter study
within the range from 0.1 to 0.7 in steps of 0.1, and subse-
quently similarity indices and q2 values were computed each
time (Figure 5).

In CoMSIA five different fields were used for describing the
physicochemical properties of the molecules. Since functional
group replacement among the considered ligands can affect
fields with similar consequences (e.g., removal of a group
affects steric and in parallel electrostatic properties or replace-
ment of charged groups influences coherently electrostatic and
hydrophobic properties), we checked how much the individual
fields contribute to the derived model. All possible combina-
tions of property fields were selected, and for each case a QSAR
model was derived. Figure 6 displays the calculated q2 values
of all 31 field combinations.

The CoMSIA results were graphically interpreted by field
contribution maps. We generated coefficient contour maps
using the field type “stdev*coeff”. To select appropriate contour
levels for each feature, the according histograms of actual field
values were analyzed. In an iterative manner a contour level
was chosen that produced the best interpretable contour map.33

Discussion

Predictive Power of the Analyses. A data set of
72 benzamidine-type inhibitors allows the derivation of
three separate QSAR models of statistical significance
(Table 3). They provide the successful prediction of
binding affinities toward trypsin, thrombin, and factor
Xa. A unique alignment has been used for the analyses
of the three affinity data sets. Since the affinity data
are intercorrelated between 30% and 70%, the deriva-
tion of three significant models is not obvious or trivial.
In all cases, the CoMSIA analyses reveal significantly
better correlations expressed in terms of higher q2

values (Table 3). Three different grid spacings have been
evaluated (1, 1.5, and 2 Å). Whereas for CoMFA some
dependence of q2 on the spacing can be detected,
CoMSIA appears to be independent of the lattice grat-
ing. Supposedly this can be explained by the greater
robustness of QSAR models obtained from the latter
method. This assumption is strongly supported by the
fact that in the case of CoMSIA q2 is nearly independent

Table 6. Predicted Binding Affinities of the 16 Inhibitors Included in the Test Seta

thrombin trypsin factor Xa

no. CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

73 0.512 0.308 -0.034 -0.001 0.131 -0.023
74 1.081 0.564 0.965 0.442 0.365 0.245
75 -0.234 -0.161 0.408 0.310 0.615 0.531
76 0.084 -0.427 -0.448 -0.464 0.052 -0.093
77 -0.477 0.175 -1.201 -0.977 -0.287 -0.067
78 0.931 0.714 0.668 0.212 -0.200 -0.323
79 0.963 0.718 0.414 0.011 -0.415 -0.484
80 0.132 -0.073 0.070 -0.088 -0.049 -0.120
81 -0.352 -0.411 -0.048 0.197 -0.317 -0.005
82 -0.772 -1.206 -0.265 -0.206 -0.143 -0.668
83 -0.174 -0.233 -0.272 -0.272 0.068 0.070
84 -1.315 -1.905 0.590 0.174 0.009 -0.225
85 -0.086 -0.277 0.355 -0.044 -0.318 -0.380
86 -0.133 -0.610 0.487 0.456 -0.202 -0.022
87 0.099 0.171 -0.089 0.257 -0.365 -0.492
88 -1.092 -0.535 -0.396 0.109 -0.069 0.281

predictive r2 0.470 0.432 0.650 0.842 0.384 0.164
a Affinities are given as deviations from the actual values (pKi act - pKi pred).

Figure 5. Variation of q2 upon changes of the attenuation
factor R used in the distance dependence between the probe
atom and the atoms of the molecules in CoMSIA. For the three
considered data sets a value of R ) 0.3 is assumed as the best
compromise.
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of translations and rotations of the superimposed mol-
ecules with respect to the lattice, whereas CoMFA
produces much stronger and rather unsatisfactory
changes in q2 (Figure 3). These instabilities of CoMFA
have been reported by several groups.31,32 In our opin-
ion, they can be attributed to the shape and steepness
of the hyperbolic Lennard-Jones and Coulomb poten-
tials and in consequence to the required arbitrary
fixation of cutoff values. For example, it can easily
happen for a lattice with 2 Å grid spacing with given
spatial orientation that the Lennard-Jones potential
at a lattice point i+1 apart from a molecule shows a
very small value close to zero. At the lattice point i,
being 2 Å closer to the molecule, the Lennard-Jones
potential has increased to a larger value; however, it
might still be below the cutoff limit. The contribution
at this lattice point could turn out to be significant in
the correlation analysis, considering a small shift of the
superimposed molecules relative to the surrounding
lattice could involve the potential at i+1 to be still
rather insignificant. However, at i the potential can now
increase just beyond the cutoff limit. As a consequence,
lattice points from this previously important region
refrain from any significant variations that can be
evaluated in a subsequent correlation analysis. In
CoMSIA, at every lattice point steadily increasing or
decreasing values are registered and can be correlated.
Accordingly a strongly reduced dependency on the
lattice orientation and the grid spacing can be expected.
Whereas the first aspect gives confidence that the QSAR
results will be independent of special modeling condi-
tions, the second has important consequences on the
required computational resources: changing from a 2
to 1 Å lattice spacing involves an increase in computing
time by a factor of 8.

Table 3 indicates that the numbers of PLS compo-
nents is higher in CoMSIA compared to CoMFA. Prob-
ably this observation results from the significantly
higher number of lattice points showing steadily varying
field values (e.g., inside the molecules). We selected the
optimal numbers of components on the basis of lowest
sPRESS. For all three enzymes a consideration of CoMSIA
models with not more than four components does not
involve a reduction in q2 of more than 5%. However, we
believe, since the evaluation of the test set molecules
underlines convincing predictive power of both methods,
that no overfitting of the data is present (see below).

The q2 values obtained for factor Xa data reveal lower
values for both CoMFA and CoMSIA. We explain this
observation by the reduced spread of affinity data over
only 3 orders of magnitude.

The predictive power of the three models has been
checked by predicting the binding constants of 16
additional ligands not included in the training set
(Figure 4). In almost all cases, the predicted values fall
close to the observed pKi values, deviating by not more
than 1 (factor Xa: 0.5) logarithmic unit. CoMFA and
CoMSIA possess comparable predictive power with
respect to these 16 examples. Regarding the affinity
data of thrombin, 84 appears to be an outlier. This
derivative is substituted at position R2 by a large
4-phenylpiperazide moiety. None of the molecules in the
training set occupies the spatial area accommodated by
this substituent in the test molecule in a comparable
way. Accordingly the reduced predictability of this
derivative can be explained.

In CoMSIA, a Gaussian-type distance dependence is
applied. In a preliminary parameter study we calibrated
the attenuation factor R to 0.3.5 Reducing R to smaller
values means that a probe placed at a particular lattice
point detects molecular similarity in its neighborhood
more globally. On the other hand, larger values of R
imply a more localized evaluation of similarity. Our
systematic parameter study for R confirms the previous
selection of R ) 0.3 as optimum (Figure 5).

It is often discussed whether the statistical signifi-
cance of comparative molecular field analysis increases
by considering additional property fields.34-37 In the
present case, we have considered five fields focusing on
different physicochemical properties. It is highly un-
likely that they are independent from each other; the
degree of interdependence is difficult to estimate, how-
ever. Accordingly, we used the thrombin data set and
computed models based on all 31 possible field combina-
tions (Figure 6). In general, q2 values between 0.6 and
0.8 are found, except for some combinations based
entirely on hydrogen-bonding and electrostatic proper-
ties. As mentioned above, this finding indicates strong
interdependencies among the individual fields. Focusing
solely on the predictive power of a QSAR model cannot
justify the consideration of five different fields. However,
regarding five (or more) fields opens the opportunity to
partition the variance analysis with respect to particular
physicochemical properties associated with the mol-

Figure 6. Obtained q2 values for the 31 possible combinations of the five property fields considered in CoMSIA. Since most of
the q2 values are above 0.6, strong interdependencies among the fields have to be assumed; r, q, l, d, and a represent the steric,
electrostatic, hydrophobic, and hydrogen-bond donor and acceptor property fields, respectively.
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ecules. This aspect gains importance if results of com-
parative molecular field analysis are used for the design
of improved ligands.

Graphical Interpretation of the Results. Besides
greater robustness and better predictive power, the
CoMSIA method provides significantly improved con-
tour diagrams.3,5,10 They allow the correlation results
to be mapped back onto molecular structures. In the
following figures, some selected contour diagrams of
field contributions of different properties derived from
CoMSIA are given together with some exemplary in-
hibitors. In addition, the solvent-accessible surface of
the corresponding proteins are shown. In Figure 7, the

steric properties derived from the thrombin, trypsin, and
factor Xa affinity data are displayed. Areas indicated
by white contours correspond to regions where steric
occupancy with bulky groups will increase affinity.
Areas encompassed by black isopleths should be steri-
cally avoided; otherwise reduced affinity can be ex-
pected. Different contour diagrams are revealed for the
three enzymes. The black contour on the right (next to
the catalytic center) is largest for thrombin, reduced in
size for trypsin, and completely absent for factor Xa. In
the center (proximal pocket, in thrombin below the 60
loop), trypsin shows a sterically favored site. For
thrombin, this area splits into a larger favorable and

Figure 7. CoMSIA stdev*coeff contour plot elucidating the sterical features with respect to thrombin, trypsin, and factor Xa.
White isopleths (contour level -0.002833) enclose areas where steric bulk will enhance affinity. Black contours (contour level
+0.0022) highlight areas which should be kept unoccupied; otherwise binding affinity will decrease. This is demonstrated by
some inhibitors with weak affinities that occupy those black contoured regions (e.g., 61, 53, 71, 59, and 35). On the other hand,
inhibitor 54 occupying only the white isopleth with its isopropyl moiety in the factor Xa map reveals a higher affinity compared
to 35. The solvent-accessible surfaces are indicated as solid surfaces.
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an adjacent unfavorable area. In factor Xa the entire
region is disfavored. Trypsin and factor Xa show steri-
cally favorable regions in the distal pocket, however, at
slightly different locations. The two molecules, displayed
together with the latter map, occupy these regions
differently. The less active 35 orients its methyl ester
group into the disfavored region whereas the more
active 54 fills the white contoured area by its p-isopropyl
substituent.

The maps of electrostatic properties show fewer fea-
tures in space; however, different areas are highlighted

for the three enzymes. In Figure 8, the contour diagram
of electrostatic properties is given for trypsin. Inhibitors
orienting groups with increasingly negative charge into
areas contoured in white will enhance ligand binding,
as will groups with a more positive partial charge placed
into areas indicated in black. In the figure the inhibitors
10 and 71 possess distinct affinity. Due to slight
stereochemical differences of their skeletons, the more
active 10 orients its carboxylate group into an area
indicated to be favorable for negatively charged groups
(white area behind the black contour). The less active

Figure 8. Contour plot of the CoMSIA stdev*coeff for the electrostatic properties with respect to trypsin binding. White isopleths
(contour level +0.00433) encompass regions where an increase of negative charge will enhance affinity, whereas in black contoured
areas (contour level -0.007) more positive charges are favorable for binding properties. The weak binding inhibitor 71 orients its
negatively charged carboxylate group into an area which is favorable for more positive charges. The more active molecules 10
and 11 place their carboxylate or methyl ester moieties into regions indicated to be favorable to accommodate more negative
charges. The solvent-accessible surface is indicated as a solid surface.

Figure 9. Contour plot of the CoMSIA stdev*coeff for the hydrophobic properties with respect to factor Xa binding. White isopleths
(contour level -0.00533) encompass regions favorable for hydrophobic groups, whereas in black contoured areas (contour level
+0.002) more hydrophilic groups are favorable for binding properties. Fairly potent inhibitors such as 14 and 39 orient their
bulky aromatic substituents into the S3 pocket of factor Xa indicated to be favorable for binding. The active compound 1 places
its piperazylsulfonyl moiety into the black contoured area favorable for hydrophilic groups.
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71 avoids this area. Instead, it partially occupies the
black region, unfavorable for negative charge, with a
carboxylate group. As an additional example molecule
11 is given, which completely avoids the area next to
the catalytic center. It orients an ester group with
electronegative oxygens into a site highlighted to be
favorable for negatively charged residues. This com-
pound shows the highest affinity among the three cases
discussed.

The maps for hydrophobic properties show areas
where increasing hydrophobicity enhances affinity for
trypsin and factor Xa in the distal S3 pocket. Especially
in the case of factor Xa (Figure 9) these areas are
produced by some potent ligands possessing bulky
aromatic moieties, e.g., 14 and 39. This finding is in
agreement with the general observation that factor Xa

favors ligands with large hydrophobic substituents in
the S3 pocket.38 Compared to thrombin and trypsin, the
S3 pocket in factor Xa is composed of three adjacent
aromatic amino acid residues (Tyr99, Phe174, Trp215),
whereas in the two other enzymes only one or two of
these neighboring residues are of aromatic nature. For
thrombin, hydrophobic groups are favored if they occupy
an area below the 60 loop and an area between the 60
loop and the catalytic triad. For all three enzymes, an
area coinciding with the spatial location of the saturated
heterocyclic moiety (e.g., piperidine or piperazine),

Figure 10. CoMSIA stdev*coeff contour plots for the steric (left, white favorable and black unfavorable for steric bulk) and
hydrophobic (right, white favorable for hydrophobic and black favorable for hydrophilic groups) properties with respect to thrombin
binding. The maps were used for the design of a new hypothetical inhibitor, displayed in gray, predicted to possess improved
affinity. The original molecule is shown in white. Its piperidine moiety was sterically enlarged to a decaline-type ring system in
order to better occupy the white contoured area favorable for steric bulk (left) and to accommodate the distal contour favorable
for hydrophobic groups (right). The methyl ester substituent of the original molecule occupying the black-colored area (left) indicated
as unfavorable for steric bulk was reduced to a methyl group that at the same time correctly occupies the white isopleth (right)
favorable for hydrophobic substituents. The required hydrophilicity in the central black contoured area (right) can be enhanced
by introducing an additional nitrogen assumed to be protonated in the binding site.

Table 7. Statistical Results from the CoMSIA Analysis Using
the Thrombin/Trypsin Affinity Differences

q2 0.574
spress 0.493
r2 0.851
S 0.291
F 95.9
components 4
fraction

steric 0.215
electrostatic 0.178
hydrophobic 0.284
donor 0.077
acceptor 0.246

box: stepsize 2 Å

Figure 11. Predicted versus actual thrombin/trypsin affinity
differences for the 16 inhibitors of the test set. The predicted
values were obtained by PLS analysis using the CoMSIA
method with 2 Å grid spacing. The dashed lines mark devia-
tions of 1 logarithmic unit from the ideal prediction. The high
deviation of inhibitor 84 (bottom right) is discussed in the text.
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present in most of the inhibitors, is indicated to be
favorable for hydrophilic groups. This is in agreement
with the fact that at this location piperazyl and pipera-
zylsulfonyl derivatives possess enhanced binding affin-
ity toward all three enzymes compared to the piperidine
derivatives.

In summary, the contour diagrams for steric, electro-
static, and hydrophobic properties highlight different
areas for the three enzymes. This observation clearly
indicates selectivity differences among the inhibitors for
the three structurally deviating serine proteinases (see
below). In this respect, the contribution maps of the
hydrogen-bonding properties are less conclusive. One
large area is contoured next to the catalytic triad for
donor facilities to be favorable; however, it is identically
located in all three enzymes. The map for acceptor
properties shows no features at all for factor Xa. In the
case of thrombin and trypsin an area next to Ser195 is
indicated. This region favors the presence of acceptor
properties to enhance affinity.

To demonstrate the ability of the CoMSIA contribu-
tion maps with regard to the design of improved affinity
molecules, the following hypothetical design is sug-
gested (Figure 10). We start with the medium active
inhibitor 79, predicted to possess a pKi of 6.43. Consid-

ering the steric contribution map (left), its methyl
carboxylate is placed in a sterically unfavorable region
(black isopleth). Furthermore, beyond the piperidine
moiety a region is highlighted by a white isopleth where
steric occupancy should be affinity-enhancing. Conse-
quently, removal of the methyl ester group and replace-
ment of the piperidine ring by a sterically extended
decaline-type moiety should enhance affinity. Consult-
ing the maps of hydrophobic properties (right), this
proposal can be further refined: a small hydrophobic
group next to the piperidine nitrogen should be affinity-
enhancing (left white isopleth). A methyl group is chosen
to serve this purpose. Furthermore, as indicated by
many of the more potent piperazine derivatives com-
pared to the piperidine moieties, an additional hydro-
philic center is advantageous for binding (black iso-
pleth). In the hypothetical molecule, this requirement
can be realized by an additional nitrogen, presumably
protonated under physiological conditions. The sug-
gested compound is predicted by CoMSIA to reveal a
pKi of 8.02, about 1.6 logarithmic units more than the
original structure.

Elucidating Selectivity Features. As mentioned
above, the contribution maps of steric, electrostatic, and
hydrophobic properties show deviating features that

Figure 12. Steric contour maps of the CoMSIA stdev*coeff for the thrombin (left) and trypsin (right) data. White isopleths
encompass areas where steric bulk will enhance affinity. Black contours highlight areas where steric bulk will be affinity-reducing.
The third map (second row) shows the steric affinity difference map (“selectivity” map) of thrombin/trypsin. The black isopleth
indicates the features mainly responsible for selectivity discrimination: if this area is accessed by sterically demanding groups,
affinity toward thrombin will drop compared to that for trypsin. The inhibitor 1 (white) with high affinity toward thrombin leaves
the selectivity-discriminating region unoccupied, whereas for thrombin less active 58 (black) orients its cyclohexyl substituent
into the contoured area.
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point to structural characteristics responsible for selec-
tivity. The maps for hydrogen-bonding properties do not
suggest any discriminating power related to these
properties. In any case, it must be remembered that all
features derived from a comparative molecular field
analysis are only a mirror of the structural variations
inherently present in the selected data set. Accordingly,
selecting another structurally deviating data set may
result in different features leading to alternative conclu-
sions.

To better elucidate the selectivity-discriminating
criteria responsible in the data set under consideration,
we performed the following data analysis, applied only
to the statistically more robust thrombin and trypsin
data. In a first step, we determined the affinity differ-
ences between thrombin and trypsin for all 72 inhibi-
tors. Even though the differences are associated with a
higher experimental uncertainty due to error propaga-
tion, we used these values as a dependent property in
a CoMSIA analysis. Over all, the difference data spread
over more than 3 orders of magnitude. The statistical
results of this evaluation are given in Table 7. According
to these results, the model obtained appears to have
some predictive power. We tried to predict the thrombin/
trypsin affinity differences for the 16 compounds not
included in the training set. Apart from the above-

discussed outlier 84, quite convincing results are ob-
tained (Figure 11).

Finally we consulted the contribution maps derived
from the affinity differences. In Figure 12, the steric
maps obtained for the original thrombin and trypsin
data are shown together with the steric map received
from the affinity differences. At first glance, the map
based on the differences appears as if obtained as a
difference between the two maps based on the original
affinity data. However, this “selectivity map” is com-
puted subsequently to a PLS analysis based on the
thrombin/trypsin pKi differences. The steric selectivity
map shows one area encompassed by a black isocontour.
Leaving this area sterically unoccupied discriminates
selectivity toward enhanced thrombin binding; i.e., the
binding affinity toward thrombin will increase relative
to trypsin. Two inhibitors are shown together with this
map. The white-colored inhibitor 1 possesses higher
affinity toward thrombin and leaves the indicated area
unoccupied. The inhibitor 58 (black-colored) with higher
affinity toward trypsin places its terminal cyclohexyl
moiety into this affinity-discriminating area. In Figure
13, the corresponding maps displaying the electrostatic
properties are shown. Again the selectivity-indicating
map presents one strong feature, a region contoured in
black requiring a positively charged group to enhance

Figure 13. Electrostatic contour maps of the CoMSIA stdev*coeff for the thrombin (left) and trypsin (right) data. White isopleths
encompass regions where more negative charge will enhance affinity, whereas in black contoured areas more positive charges
are favorable for binding. The third map (second row) shows the electrostatic affinity difference map of thrombin/trypsin. The
remaining black isocontour shows that the presence of a more positively charged group in this area will enhance selectivity
toward stronger binding to thrombin. The inhibitor 1 places its positively charged sulfur atom at the methylsulfonyl group into
this area thus revealing better thrombin binding; see Figure 13.
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affinity toward thrombin. Considering again the two
examples, the more potent thrombin inhibitor 1 (white)
orients its methyl sulfonyl group (with sulfur bearing a
positive partial charge) into this area, whereas the less
potent thrombin ligand 58 (black) leaves this region
unoccupied. Comparing the local shape differences of
the thrombin versus trypsin binding site, it is interest-
ing to note that both contours highlighted in the steric
and electrostatic selectivity-indicating maps fall next to
the 60 loop (Figure 14). This loop occurs as a special
characteristic in thrombin; accordingly it is reasonable
that areas where affinity between both enzymes is
discriminated fall close to this 60 loop. Obviously,
contour diagrams derived from a CoMSIA analysis
based on binding affinity differences highlight plausible
spatial characteristics associated with structural dif-
ferences responsible for selectivity discrimination.

Conclusions
The present study has shown CoMSIA to possess

better predictive power and greater robustness com-
pared to CoMFA. Furthermore, it has been demon-
strated that 3D QSAR methods can be successfully
applied to derive distinct correlation models for a set of
inhibitors binding with deviating affinities to three
related enzymes. The contour diagrams obtained for the
various CoMSIA field contributions can be mapped back
onto structural features accounting for the affinity
trends and selectivity discrimination among the inhibi-
tors. Even more conclusive with respect to the latter
aspect is a correlation analysis based on affinity differ-
ences. It reveals a predictive model and highlights those
regions in the ligands that are responsible for the
selectivity differences. On the basis of the spatial
arrangement of the various field contributions, novel
molecules can be designed that are predicted to possess
improved binding affinity. 3D QSAR models are a direct
mirror of the structural variations inherently present
in the selected data set. Accordingly, the selection of a
structurally more diverse set of ligands should allow to
map features distinct from those highlighted by the

present study. Such a compilation should also allow to
analyze affinity variations of the ligands resulting from
differences in their hydrogen-bonding properties.
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